Interior gradient estimate for 1-D anisotropic curvature flow
نویسندگان
چکیده
منابع مشابه
Page 1 INTERIOR GRADIENT ESTIMATES FOR MEAN CURVATURE EQUATIONS
In this paper we give a simple proof for the interior gradient estimate for curvature and Hessian equations. We also derive a Liouville type result for these equations. §0. Introduction The interior gradient estimate for the prescribed mean curvature equation has been extensively studied, see [9] and the references therein. For high order mean curvature equations it has also been obtained in [1...
متن کاملOn Anisotropic Curvature Flow Equations
We study the anisotropic flow V = bk where b > 0. We prove that if 13 < σ ≤ 1, only type I blow up occurs and if 0 < σ < 13 Type II blow up occurs. We also establish a prior estimates and existence of stationary solutions of self-similar curves and the existence of “ Abresch-Langer” type curves.
متن کاملDiscrete anisotropic curvature flow of graphs
© SMAI, EDP Sciences, 1999, tous droits réservés. L’accès aux archives de la revue « ESAIM: Modélisation mathématique et analyse numérique » (http://www.esaim-m2an.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce...
متن کاملExistence and uniqueness for planar anisotropic and crystalline curvature flow
We prove short-time existence of φ-regular solutions to the planar anisotropic curvature flow, including the crystalline case, with an additional forcing term possibly unbounded and discontinuous in time, such as for instance a white noise. We also prove uniqueness of such solutions when the anisotropy is smooth and elliptic. The main tools are the use of an implicit variational scheme in order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática
سال: 2009
ISSN: 2175-1188,0037-8712
DOI: 10.5269/bspm.v23i1-2.7464